Properties of Artifact Representations for Evolutionary Design

Gregory S. Hornby

QSS Group Inc., NASA Ames Research Center
Mail Stop 269-3, Moffett Field, CA 94035-1000
hornby@email.arc.nasa.gov

Abstract

To achieve evolutionary design systems that scale
to the levels achieved by man-made artifacts we
can look to their characteristics of modularity, hi-
erarchy and regularity to guide us. For this we fo-
cus on design representations, since they strongly
determine the ability of evolutionary design sys-
tems to evolve artifacts with these characteristics.
We identify three properties of design representa-
tions — combination, control-flow and abstraction
— and discuss how they relate to hierarchy, modu-
larity and regularity.

Introduction

One of the foremost challenges of evolutionary de-
sign is improving functional scalability to the level
of artifacts designed by people. To achieve human-
level complexity of design it is worth looking at how
people design complex artifacts. From the fields
of software development and engineering, we see
that complex artifacts are achieved by exploiting
the principles of hierarchy, modularity, and regu-
larity (12) (15) (8).

If we assume that the principles of hierarchy,
modularity and regularity are necessary to achieve
scalability then our next goal is to design an evolu-
tionary design system capable of producing designs
with these characteristics. Since its inception, the
field of evolutionary computation has focused pri-
marily on the method for managing the population
of solutions, that is, the search algorithm. But the
characteristics of evolved designs are limited and
biased by the representations that are used to en-
code them and there has been a growing interest in
better representations for evolutionary design. To
help in creating design representations capable of
producing designs with modularity, hierarchy and
regularity it is useful to know which properties rep-
resentations can have.

Previous Work

Before presenting our own list of properties of de-
sign representations we first review related work on
classes of design representations and different prop-
erties which they can have.

Angeline (3) classifies representations as: transla-
tive development functions, mappings that are one-
to-one and independent; generative development
functions, those with a recursive definition or some
type of production system; and adaptive develop-
ment functions, ones in which the the developmen-
tal function for the entire population can change
over the course of evolution. This can be summa-
rized as the level to which the developmental system
of the representation is applied or evolved: no de-
velopment, individual-level developmental system,
and population-level developmental system.

To better help us create a design representation
Bentley and Kumar (4) draw inspiration from em-
bryology to classify representations as:

e No embryogeny, a representation in which there
is a one-to-one mapping between elements in the
encoded design and elements in the actual design.

e External embryogeny, the developmental rules
are not changeable by the search algorithms,
rather parameters for such a system are evolved.

e Explicit embryogeny, the rules for creating a de-
sign are procedural, such as with genetic pro-
gramming (10) and Lindenmayer systems (13)
but could also be a derivation tree for a gram-
mar.

e Implicit embryogeny, the rules indirectly specify
a design, such as with cellular automatas and ar-
tificial DNA systems.

In their study they conclude that implicit embryo-
genies are better than explicit, but their explicit



embryogenies do not include sub-procedural ele-
ments such as the automatically defined functions
of genetic programming which have been shown to
significantly improve the scalability of an evolution-
ary algorithm (10).

In another comparison Komosinksi and Rotaru-
Varga (9) compare three different representations
on three different problems within the class of ar-
ticulated creatures: simul, a direct low-level encod-
ing; recur, an indirect representation; and devel, an
indirect developmental encoding. The characteris-
tics they identify for these representations (rated
in terms of none/low/variable/high) are: genotype
complexity; interpretation complexity; body con-
straints; brain constraints; modularity; compres-
sion; and redundancy. Of these modularity, com-
pression and redundancy are generalizable to other
substrate domains whereas the others are domain
specific. From their comparison the authors con-
cluded that representations should be high-level
and structured.

Stanley and Miikkulainen list five dimensions for
artificial embryogenies: cell fate, targeting, hete-
rochrony, canalization, and complexification (14).
With this classification rather than either having
or not having a property each property is a dimen-
sion along which a representation lies. Interestingly,
the authors note that the previously reviewed clas-
sifications tend to distinguish only between those
representations that have reuse from those that do
not have reuse but their own classification scheme
does not make such a distinction. In addition, while
the authors do not make any claims as to which cat-
egory is most scalable they place natural evolution
on the chart for reference as to which properties a
representation should have. They score natural evo-
lution as: cell fate has many determination meth-
ods; targeting is in between specific and relative;
heterochrony is highly flexible; canalization has a
high tolerance for imprecision; and for complexifi-
cation it has a highly variable genotype.

Aside from Angeline’s classification, which
mainly differentiates between levels in which the
development system is applied, these investigations
into design representations are somewhat contra-
dictory in their findings. While Bentley and Ku-
mar seem to agree with Stanley and Miikkulainen
that representations should be implicit and more
like nature, their methods for classifying represen-
tations are different. In contrast, Komsinksi and
Rotaru-Varga find that representations should be
more structured and high-level. None of these in-

vestigations give clear guidance on how to construct
a better representation.

Programming Languages as a Model

To give better direction for the construction of scal-
able evolutionary design representations, more pre-
cise and more useful definitions of design proper-
ties are needed. Here, to develop a classification
we identify three properties of representations. For
this we use the metaphor of design representations
as a kind of computer programming language to de-
fine the following features of design representations

(7):

e Combination: The ability to hierarchically cre-
ate more powerful expressions from simpler ones.
While the subroutines of GLib (2) and genetic
programming (GP) (10) allow explicit combina-
tions of expressions, combination is not fully en-
abled by mere adjacency or proximity in the
strings utilized by typical representations in ge-
netic algorithms.

e Control-flow: All programming languages have
some form of control of execution which permits
the conditional and repetitive use of structures.
Two types of control-flow are:

— Conditionals can be implemented with an if-
statement, as in GP, or a condition which gov-
erns the appropriate rule to apply, such as in
L-systems (5) or cellular automata.

— Iteration is a looping ability, such as the for-
loop in C/C++ programs.

e Abstraction: Has two components to it.

— Labeled procedures: This consists of the
ability to encapsulate a group of expressions
in the language and label them, enabling them
to be manipulated and referenced as a unit. An
example of abstraction is the automatically de-
fined functions (ADFs) of GP (10).

— Parameters: The ability to pass parameters
to procedures, such as with ADF's or the pro-
duction rules in parametric L-systems.

In implementation, these elements can be parceled
out to different mechanisms, such as branching,
variables, bindings, recursive calls, but are nonethe-
less present in some form in all programmable sys-
tems. Some of these basic properties have also been
shown to have analogues in biological systems: phe-
notypes are specified by combinations of genes; the



expression of one gene can be turned on/off by the
expression of another gene (11); and an upstream
protein can control a downstream protein’s activity
through a signaling pathway (1).

Properties to Characteristics

Having identified properties of design representa-
tions we can now go back to characteristics of hu-
man designed artifacts to determine how these char-
acteristics can be achieved.

e hierarchy: the ability to make hierarchical con-
structs is determined by the ability of a repre-
sentation to do combination on elements of the
genotype.

e modularity: can be realized by abstraction, which
is an encapsulation of a section of the genotype.

e regularity: is achieved through either iteration
or abstraction. Representations which can reuse
parts of the genotype to create the phenotype are
generative representations (5).

Not mentioned in the above mapping from repre-
sentational properties to design characteristics are
the properties of conditionals or parameters. One
use of these two properties is in evolving families of
designs (6).

Summary

We can work toward better representations by us-
ing the characteristics of hierarchy, modularity and
regularity found in man-made design to guide us.
In this paper I have borrowed from the field of
computer programming languages to identify three
properties of design representation — combination,
control-flow and abstraction — and matched these
properties to the three characteristics of man-made
designs. Only be creating representations which
have these properties can we hope to produce evo-
lutionary design systems that are able to scale to
complex, human-level designs.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff,
K. Roberts, and P. Walter. Molecular Biology
of The Cell. Garland Publishing, New York,
4th edition, 2002.

[2] P. Angeline and J. B. Pollack. Coevolving high-
level representations. In C. Langton, editor,
Proceedings of the Third Workshop on Arti-
ficial Life, pages 55-71, Reading, MA, 1994.
Addison-Wesley.

[3] P.J. Angeline. Morphogenic evolutionary com-
putations: Introduction, issues and examples.
In J. McDonnell, B. Reynolds, and D. Fo-
gel, editors, Proc. of the Fourth Annual Conf.
on FEvolutionary Programming, pages 387-401.
MIT Press, 1995.

[4] P. Bentley and S. Kumar. Three ways to
grow designs: A comparison of embryoge-
nies of an evolutionary design problem. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Gar-
zon, V. Honavar, M. Jakiela, and R. E. Smith,
editors, Genetic and FEvolutionary Computa-
tion Conference, pages 35-43. Morgan Kauf-
mann, 1999.

[5] G. S. Hornby. Generative Representations for
Evolutionary Design Automation. PhD thesis,
Michtom School of Computer Science, Bran-
deis University, Waltham, MA, 2003.

[6] G. S. Hornby. Generative representations for
evolving families of designs. In E. Cantu-
Paz et al., editor, Proc. of the Genetic and
Evolutionary Computation Conference, LNCS
2724, pages 1678-1689, Berlin, 2003. Springer-
Verlag.

[7] G.S. Hornby and J. B. Pollack. Creating high-
level components with a generative representa-
tion for body-brain evolution. Artificial Life,
8(3):223-246, 2002.

[8] C. C. Huang and A. Kusiak. Modularity in de-
sign of products and systems. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part
A, 28(1):66-77, 1998.

[9] M. Komosinski and A. Rotaru-Varga. Compar-
ison of different genotype encodings for simu-
lated 3d agents. Artificial Life, 7(4):395-418,
2001.

[10] J. R. Koza. Genetic Programming: on the pro-
gramming of computers by means of natural se-
lection. MIT Press, Cambridge, Mass., 1992.

[11] B. Lewin. Genes VII. Oxford University Press,
2000.

[12] B. Meyer. Object-oriented Software Construc-
tion. Prentice Hall, New York, 1988.

[13] P. Prusinkiewicz and A. Lindenmayer. The Al-
gorithmic Beauty of Plants. Springer-Verlag,
1990.



[14]

[15]

K. O. Stanley and R. Miikkulainen. A taxon-
omy for artificial embryogeny. Artificial Life,
9(2):93-130, 2003.

K. Ulrich and K. Tung. Fundamentals of prod-
uct modularity. Issues in Design/Manufacture
Integration - 1991 American Society of Me-
chanical Engineers, Design Engineering Divi-
sion (Publication) DE, 39:73-79, 1991.



